Backward error bounds for approximate Krylov subspaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Approximate (Symmetric Block) Rational Krylov Subspaces without Explicit Inversion

It has been shown that approximate extended Krylov subspaces can be computed –under certain assumptions– without any explicit inversion or system solves. Instead the necessary products A−1v are obtained in an implicit way retrieved from an enlarged Krylov subspace. In this paper this approach is generalized to rational Krylov subspaces, which contain besides poles at infinite and zero also fini...

متن کامل

Computing Approximate Extended Krylov Subspaces without Explicit Inversion

It will be shown that extended Krylov subspaces –under some assumptions– can be retrieved without any explicit inversion or system solves involved. Instead we do the necessary computations of A−1v in an implicit way using the information from an enlarged standard Krylov subspace. It is well-known that both for classical and extended Krylov spaces, direct unitary similarity transformations exist...

متن کامل

Residual and Backward Error Bounds in Minimum Residual Krylov Subspace Methods

Minimum residual norm iterative methods for solving linear systems Ax = b can be viewed as, and are often implemented as, sequences of least squares problems involving Krylov subspaces of increasing dimensions. The minimum residual method (MINRES) [C. Paige and M. Saunders, SIAM J. Numer. Anal., 12 (1975), pp. 617–629] and generalized minimum residual method (GMRES) [Y. Saad and M. Schultz, SIA...

متن کامل

Error Bounds for Approximate Value Iteration

Approximate Value Iteration (AVI) is an method for solving a Markov Decision Problem by making successive calls to a supervised learning (SL) algorithm. Sequence of value representations Vn are processed iteratively by Vn+1 = AT Vn where T is the Bellman operator and A an approximation operator. Bounds on the error between the performance of the policies induced by the algorithm and the optimal...

متن کامل

Error Bounds for Approximate Policy Iteration

In Dynamic Programming, convergence of algorithms such as Value Iteration or Policy Iteration results -in discounted problemsfrom a contraction property of the back-up operator, guaranteeing convergence to its fixedpoint. When approximation is considered, known results in Approximate Policy Iteration provide bounds on the closeness to optimality of the approximate value function obtained by suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2002

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(01)00413-x